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Large displacement finite element analysis and subsequent experimental work has been uscd 10 
investigate the adhesive peel test; at this stage, only elastic behaviour has been considered. 

Both non-cracked and cracked configurations have been analysed, representing initial and 
continuous failure of the peel test. Analysis of the former indicated that initial failure was 
caused by the adhesive principal stresses driving a crack towards the interface with the flexible 
adherend. Investigation of the cracked configuration has shown that the amount of mode I1 
loading at the crack tip is significant and is essentially independent of peel angle, load and 
adhesive or adherend modulus, only decreasing as the adhesive becomes incompressible. Failure 
(propagation) has been shown to occur a t  a critical applied bending moment for a particular 
adherend and adhesive, independent of peel angle. Further, the strength (IoadJ’measured by the 
peel test is not proportional to the actual strength ofthe adhesive, a small increase in the adhesive 
strength causing a much larger increase in the applied peel load. 

I NTR 0 D U CTlO N 

The adhesive peel test exists in  a number of forms such as the stripping, “T”, 
floating roller and climbing drum tests. These are all essentially variations 
of a common theme, shown schematically in Figure 1. A peel load is applied 
at some angle to the adhesive through a flexible adherend. This tests the 
adhesive in its weakest mode, since strengths from shear lap tests are many 
times greater than those from peel tests even for high peel strength adhesives. 
This is because the load, P, and more importantly, the bending moment, M ,  
due to the moment of the load about the bond end (see Figure 1) are reacted 
over a very small region of the adhesive at the bond end, thus causing high 
local stresses. 

The various peel tests have only been used in a comparative manner, 
largely because of the lack of information about the adhesive stress distri- 
bution. Further, small modifications of adhesive structure, such as adding 
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128 A .  D. CROCOMBE A N D  R .  D. A D A M S  

I' 
PEEL A M = P x m  LOAD 

FLEX1 BLE ADHEREND 
ANGLE 

RIGID ADHEREND 

FIGURE 1 Schematic representation o f t h e  peel test 

second phase elastomeric components, can drastically increase peel strength 
but with only minimal effects on lap shear strength. The purpose of this work 
was therefore to investigate the mechanics of the peel test in order to establish 
the way in which such joints fail. This necessitates the evaluation of the 
adhesive stress distribution in the peel test and subsequent application of a 
failure criterion based on fracture mechanics concepts. The finite element 
technique, which has already been used successfully for the analysis of ad- 
hesive joints,' has been used here. This technique provides a method of stress 
analysis for geometrically complicated structures. The effects of plasticity 
may well be important but, at this stage, elastic behaviour has been assumed. 

Previously, the peel test has been represented either by a non-cracked, bi- 
material model or by a cracked, single-material model. Among the workers 
who adopt the first approach are Kaelble' and N i c h ~ l s o n . ~  They have 
modelled the adhesive as a layer of tension and shear springs and assume 
failure at a maximum stress. 

Anderson et aL4 and Kendall' have adopted the second approach, deter- 
mining the load required for propagation by applying an energy balance to 
the system in an attempt to quantify peel failure. However, these analyses 
cannot consider mixed mode fracture and are only a simplified model of the 
real bi-material test. 

APPLICATION OF FRACTURE MECHANICS TO BI- 
MATERIAL SYSTEMS 

In applying fracture mechanics principles to  bi-material systems, some 
workers, such as Gledhill et aL6 have followed the traditional approach, 
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PEEL ANALYSIS BY FINITE ELEMENT METHOD 129 

considering cohesive fracture of the adhesive. Others, such as Anderson et al.,' 
have analysed interfacial fracture of bi-material systems, using an interfacial 
fracture energy (y,) term in place of the usual cohesive fracture energy ( y )  
term. Although interfacial fracture energy is not strictly a material property, 
it can be considered as a parameter in a continuum sense, and defines the 
amount of energy required to break interfacial bonds. 

As the locus of failure in the peel test is either interfacial between the 
adhesive and the flexible adherend, or cohesive extremely close to  the flexible 
adherend, the interfacial approach has been used. 

Analysis for interfacial fracture is similar to that for cohesive fracture. This 
fracture may be considered in two parts : the first, called mode I in fracture 
mechanics terminology, involves cleavage (tensile) failure and the second, 
mode 11, involves shear failure. Practical situations usually consist of a 
combination of both modes. 

Basically, the crack is assumed to propagate only if the energy released on 
propagation is sufficient to break the interfacial bonds. This critical energy 
level is a function of the mode I and I1 interfacial fracture energies, y,, and 
yo,,, the energies required to separate a unit area of two materials subjected 
to pure mode I and mode I1 loading respectively. The proportions of each 
are determined by the amount of that mode present at the crack tip. As yall 
can be more than twice yaIr4 a knowledge of the relative amounts of mode I 
and I1 present is essential, and it was an objective of this work to  investigate 
this relationship in various configurations of the peel test. This has been 
achieved by using the finite element method to investigate the stress field 
around the crack tip. 

In cohesive linear fracture, the stresses around the crack tip can be written 
as (Paris and Sih') 

B~ = K i F ( O ) / ( 2 ~ r ) ' / '  

where Y and O are polar co-ordinates with the origin at the crack tip. The stress 
intensity factor (Ki) can be used to determine the proportion ofmodes I and I1 
loading present at the crack tip. 

In bi-material systems, a similar form for the stresses is found.7 Thus, in 
the analysis of the peel test with a crack already present a general relationship 
for the stresses on the interface will be assumed in the form 

oi = Ci/r1i2 

where Ci is the intensity of the singularity. The value of Ci, which gives a 
measure of the ith mode present at the crack tip, can be obtained from the 
stress field around the crack tip. 

Two general comments on this approach should be made. First, the effects 
of plasticity are not included at this stage. However, in practice, the interfacial 
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130 A .  D. CROCOMBE A N D  R .  D.  ADAMS 

fracture energy terms will include some of these effects and careful choice of 
adherend and adhesive will minimise any remaining errors. Second, this 
approach is equally applicable if the fracture is cohesive, the values of cohesive 
fracture energy of the adhesive, y, replacing the interfacial fracture energy, y,. 

THE FINITE ELEMENT PROCEDURE 

This technique has been used successfully many times in uncracked bi- 
material systems. Trantina' and Wang" have extended the technique to 
investigate cohesive fracture of an adhesive layer in a bi-material system, 
while Anderson et a1.' and Lin" considered interfacial fracture of a bi- 
material system. In the present work, the cracked peel test is modelled as 
interfacial fracture in a bi-material system and the finite element technique 
is used to obtain the stress distributions around the crack tip and hence the 
intensities C,  and C, introduced earlier. The four elements adjacent to the 
crack tip have their mid-nodes distorted, after Henshall and Shaw,', to 
produce the appropriate crack tip singularity. 

As a result of the large rotation present in the peel test, the assumptions of 
small displacement theory (upon which most finite element codes are based) 
do not apply and the strain-displacement relationship is no longer linear. If 
the strains can still be considered as small, then the governing equation is 
found to be' 

wherep, q = x, y, z 

where D = u + v + w (the displacement vector). 
Direct solution of the finite element formulations is no longer possible, 

because of the non-linear nature of the governing equations, and a solution 
has to be achieved using an iterative scheme, testing the solution at each step 
for convergence. A detailed description of large displacement finite element 
formulations is given e1se~here.I~ 

A large displacement finite element program, outlined above, was written 
which incorporated both triangular and quadrilateral quadratic isopara- 
metric elements. The quadrilateral elements are good general purpose 
elements and have been used successfully by many workers. The triangular 
elements have been included to allow local mesh refinement, and a local 
refinement block has been used to introduce extra elements locally around 
the crack tip, shown in Figure 2, including the crack tip elements mentioned 
earlier. A mesh generating routine has been written which incorporates the 
previous two features. 
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FIGURE 2 Finite element meshes use in the analysis of the non-cracked and cracke peel 
tests. 

ANALYTICAL RESULTS 

The peel test configuration has been modelled both as a cracked and as a 
non-cracked bi-material system. Where the system contains a crack, it is 
modelled by giving the adhesive and adherend separate nodes on the inter- 
face. The rigid substrate is represented by constraining the appropriate 
adhesive nodes in both directions. Initial analyses considered variations in 
nominal peel angle, o (90, 60 and 30 degrees) and peel load, P (1.0, 0.5 and 
0.1 Nmrn-l). These were then extended to include a range of adhesive and 
adherend properties. Specific details of the initial analyses are given in Table I. 
The free length of the adherend was chosen so that the difference between the 
slope at the end of the adherend (calculated using large displacement beam 
theory) and the nominal peel angle was no more than 0.05'. This resulted in a 
maximum length of 220 mm ( P  = 0.1 Nmm-l, w = 900) and a minimum 
length of 30 mm ( P  = 0.5 Nmm- ', 0) = 30"). 

TABLE I 

Adhesive and adherend details in initial analyses 

Parameter Adhesive Adherend 

Tensile modulus (GNm- ') 2.8 210.0 

Thickness (mm) 0.2 0.2 
Poisson's ratio 0.4 0.3 
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132 A .  D. CROCOMBE AND R .  D. ADAMS 

D Y -STRESS D 
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FIGURE 3 Adhesive transverse direct stress fields in the non-cracked and cracked peel tests. 

The finite element meshes were refined locally until negligible change in 
the stress distributions was obtained. The meshes used for the cracked and 
non-cracked configurations followed the same pattern, the adhesive and the 
adherend being modelled by coarse elements (10 mm x 0.2 mm) for most of 
the structure, reducing to the refined meshes shown in Figure 2. The smallest 
elements were 0.0125 mm x 0.025 mm in the cracked configuration and 
0.025 mm x 0.025 mm in the non-cracked system. 

Figure 3 gives a general picture of the adhesive stress distribution in both 
the non-cracked and cracked configurations. The adhesive transverse direct 
stress (a,) is shown in an isometric projection. The base of the projection 
refers to an area of the adhesive normal to the plane of the crack and the 
height is the stress level. A singularity which lies on the interface exists in both 
cases, either at the bond end, or at the crack tip. The stress on the free surface 
of the crack, which should be zero, fluctuates about this value because the 
surface stresses are obtained by extrapolation from the integration (Gauss) 
points within the element. 

INVESTIGATION OF THE NON-CRACKED SYSTEM 

Comparison between the adhesive transverse direct stress (a,) distribution 
resulting from the finite element analysis and the analysis of Kaelble2 is shown 
in Figure 4. The solid curve is from Kaelble and the discrete points from the 
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cry /Nmm-2 

FIGURE 4 
end in the non-cracked peel test. A, 90" peel test; V,30" peel test. 

Variation of adhesive transverse direct stress, u y ,  with distance, x, from the bond 

133 

2 

finite element analysis. Kaelble assumes the stress across the adhesive thick- 
ness is constant, but Figure 3 clearly shows that this is not so. Such an 
approach grossly underestimates the value of the maximum stress, only 
providing an average stress. However, to make a comparison, the finite 
element stresses have been averaged across the adhesive thickness. Close 
agreement was then found for the complete range of peel loads and angles 
considered. 

Figure 5 shows details of the principal stresses in the adhesive, indicating 
that the maximum stress occurs at the bond end adjacent to the flexible 
adherend. Assuming that failure occurs when this maximum stress reaches a 

FIGURE 5 Distribution of the adhesive principal stresses in the non-cracked peel test. The 
principal stresses are shown as line vectors. 
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134 A. D. CROCOMBE A N D  R .  D. ADAMS 

certain level, it can be seen that a crack will be driven towards the interface 
with the flexible adherend, as is found in practice. The plot shown is for a 
90" peel test, but it is characteristic of the other peel angles and load cases 
investigated. 

INVESTIGATION OF THE CRACKED SYSTEM 

The main purpose of this section of the analysis was to determine the 
intensities, Ci, for the adhesive transverse direct stress (G,,) and shear stress 
(T~,,) along the interface, and hence the proportions of modes I and I1 loading 
present at the crack tip. The singular relationships for both stresses, as 
discussed earlier, were assumed to be given by 

and the intensities were calculated by evaluation at points close to the crack 
tip using the relationship above and extrapolation of these values to the 
crack tip, this being a familiar method in linear elastic fracture mechanics. 

The results obtained are shown in Table 11, the superscript * referring to 
the 90" peel test. 

TABLE 11 

Adhesive intensity factors for the cracked peel test 

Proportion mode I I  Mode I intensity Applied moment 
Configuration C,I/(Cl+ (111) c,/q M / M *  

90" ( P  = 0.5 Nmm-') 
60" ( P  = 0.5 Nmm-') 
30" ( P  = 0.5 Nmm-I) 
90" ( P  = 1.0 Nmm-') 
90" ( P  = 0.1 Nmm-') 

29 % 
30 x, 
30 % 
29 % 
30 

1 1 
0.72 0.70 
0.36 0.34 
1.37 I .40 
0.47 0.46 

C; : 26.77 Nmm-3'2 

The proportion ofmode I1 loading at the crack has been found to be essentially 
independent of peel angle and load for the range of parameters investigated. 
This is because the adhesive stresses are caused mainly by bending and not by 
direct loading in the adherend. This has been demonstrated by showing that 
the intensities are proportional to the bending moment (compare the last 
two columns of Table 11). 

Failure in the peel test at a critical intensity therefore implies failure at a 
critical bending moment. Thus, for a particular adherend and adhesive, 
failure should occur at a constant bending moment independent of peel 
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TABLE I11 

Variation of mode I 1  loading in the cracked peel test with adhesive and adherend properties 

135 

Proportion Mode 11 
Change in material property C, , / (C,  + C , , )  

Initial analysis (Table I) 
Adhesive modulus = 5.0 GNm- 
Adhesive modulus = 0.5 GNm-’ 

Adhesive Poisson’s ratio = 0.3 
Adhesive Poisson’s ratio = 0.49 

29 % 
31 % 
25 % 

28 % 
12% 

Adherend modulus = 70.0 G N m - 2  32 % 

angle. Using large displacement theory, the bending moment, M ,  applied to 
the peel test can be expressed in terms of the load, P,  and the peel angle, + , 2  as 

M = [2EZP(1- C O S ~ ) ] ” ~ ,  

where EZ is the flexural rigidity of the material. Thus, the stresses, which are 
proportional to the bending moment, are proportional to the square root of 
the load. This illustrates the non-linear nature of the peel test, that is, a small 
increase in adhesive strength causes a much larger increase in the load 
required to  cause failure of the peel test (seen in columns 1 and 3 of Table 11). 
In fact the stresses are not exactly proportional to the square root of the load, 
since the above expression for the bending moment neglects deflections in 
the bonded region of the peel test, which causes higher bending moments 
than are actually present ; this effect is worse at higher loads. 

The variation of mode I1 loading present with different adhesive and 
adherend materials was investigated by changing the appropriate property in 
the analysis from that outlined earlier. The results are shown in Table 111. 

It can be seen that the amount of mode I1 is largely independent of either 
adhesive or adherend tensile modulus and only decreases significantly as the 
adhesive becomes incompressible (that is as Poisson’s ratio tends to 0.5). 

EXPE RI M E NTAL R ES U LTS 

The peel testing apparatus is shown schematically in Figure 6. The peel angle 
is set by rotating the carrier plate and the specimen peeled by the upward 
movement of the crosshead. Since the horizontal distance between the crack 
tip and the grips on the load cell is known together with the applied load 
then, by using large displacement beam theory, the actual peel angle can be 
evaluated (Appendix 1). 

To avoid plastic deformation in the adherend, thin, spring steel strips 
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136 A.  D. CROCOMBE AND R .  D.  ADAMS 

I TENSILE TESTING MACHINE 
FIGURE 6 Schematic representation of the peel test apparatus. 

(0.12 mm thick) were used as the flexible adherend, a thicker steel section being 
used for the rigid base. Both adherends were de-greased, abraded with a fine 
sand blast, re-cleaned and bonded with a high peel strength adhesive. 

Plots of peel load and peeled distance were made and two data points were 
taken from each test, one at the beginning and one at the end. The results are 
shown in Figure 7. Also shown in Figure 7 is a solid line which is a constant 
bending moment curve with a least squares fit to  the data. The form of this 
curve is obtained from the expression for the bending moment outlined earlier 
and found in.’ The points lie close to this curve, indicating that failure does 
occur at a constant bending moment, as predicted by the finite element 
analysis. 

CON C LU SlON S 

An elastic large displacement finite element analysis of the peel test and 
subsequent experimental work has revealed a number of important points. 

Firstly, initial failure is caused by the adhesive principal stresses driving a 
crack towards the interface with the flexible adherend. 

Secondly, for a particular adherend and adhesive, failure will occur a t  a 
critical applied bending moment independent of peel angle. Further, the peel 
test has been shown to be non-linear with load, that is the actual adhesive 
strength is essentially proportional to the square root of the peel load. 
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P/ N mm-' 

41 

0 20 40 60 80 100 
QJ /DEGREES 

FIGURE 7 Variation of peel load, P, with peel angle, 4. The solid curve is a line of constant 
bending moment with a least squares fit to the experimental points. 

Finally, the proportion of mode I1 loading at the crack tip has been shown 
to be essentially independent of the peel load and angle, and the adhesive or 
adherend modulus. The proportion is significant, about 30 %, decreasing to 
less than half of this value as the adhesive becomes incompressible. This last 
point provides the information required for a fracture mechanics analysis 
based on the interfacial fracture energy approach outlined earlier. 

This work has been carried out for an elastic system. However, the effects 
of plastic behaviour of both the adherend and the adhesive can be assessed by 
evaluating the energy required for the plastic deformation of the materials. 
In an attempt to establish this, the authors are currently undertaking an 
elasto-plastic large displacement finite element analysis of the peel test and 
these results will be reported later. 

APPENDIX I 

Determination of Actual Angle of Peel, 4 
Definition of variables : 

o = nominal peel angle 
4 = o - a  = actual peel angle 
s = length of bent portion of strip. 
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k 

FIGURE 8 Definition of variables used in the evaluation of the actual angle of peel. 

From2 and with reference to Figure 8: 

dH/ds = [2P( 1 - COSB)/EZ]~ i 2  

:. (2P/E1)1’2 Ji ds = J:- (1 -~osB)-”~dB 

Evaluating the integrals leads to : 

( P / E I )  ‘12s = [In( tan( 0/4))] ;+ 
For the bent portion of the strip, Figure 8 : 

dun/& = sin(B+cr) 

Substituting (c) in (a) 

sin(8 +a)  dd/dm = [2P(1- cosB)/EI] ‘I2 

:. (2P/EZ)’12 1: dm = [oMsin(O+.)(l -cos0)-’i2 dB 

Evaluating the integrals leads to : 
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PEEL ANALYSIS BY FINITE ELEMENT METHOD 139 

Substituting (b) in (d) gives 

(P/EI)”’m = 2sin((ru +a)/2)+~ina((P/EI)”~s - 2) (el 
Equation (e) forms the basis for an iterative scheme to calculate CI, knowing 
P, E,  I ,  m, s and w, viz. : 

ai = sin-’[((P~EI)’’Zm-2sin((w+ai~1)/2))/((~/E~)’12s-2)] 

where a, = 0. 
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